7 research outputs found

    Sensor technologies for quality control in engineered tissue manufacturing

    Get PDF
    The use of engineered cells, tissues, and organs has the opportunity to change the way injuries and diseases are treated. Commercialization of these groundbreaking technologies has been limited in part by the complex and costly nature of their manufacture. Process-related variability and even small changes in the manufacturing process of a living product will impact its quality. Without real-time integrated detection, the magnitude and mechanism of that impact are largely unknown. Real-time and non-destructive sensor technologies are key for in-process insight and ensuring a consistent product throughout commercial scale-up and/or scale-out. The application of a measurement technology into a manufacturing process requires cell and tissue developers to understand the best way to apply a sensor to their process, and for sensor manufacturers to understand the design requirements and end-user needs. Furthermore, sensors to monitor component cells’ health and phenotype need to be compatible with novel integrated and automated manufacturing equipment. This review summarizes commercially relevant sensor technologies that can detect meaningful quality attributes during the manufacturing of regenerative medicine products, the gaps within each technology, and sensor considerations for manufacturing

    TISSUE ENGINEERING THE MENISCUS FOR CLINICAL TRANSLATION: STEM CELLS, FIBERS, AND ATTACHMENTS

    Full text link
    In the United States, there are over 1 million meniscus related surgeries per year. Meniscus injury is often caused by trauma or overuse. The best treatment option for extensive meniscal degeneration or loss is allograft replacement, however, allograft availability is limited by immunological and anatomical constraints. This work aims to develop a tissue-engineered meniscus that eliminates these constraints by using the patient’s own cells and the exact anatomical shape. In order for tissue engineered menisci to become a viable treatment alternative, several pre-clinical challenges must be addressed (Chapter 1). Mesenchymal stem cells (MSCs) are a promising clinically available cell source. Co-culture with the native cell type was evaluated as a technique to guide fibrochondrogenic differentiation (Chapter 3). The development of large diameter and organized collagen fibers is essential to mechanical stability of a tissue engineered meniscus. The ability of MSCs to form fibers in mono and co-culture was evaluated (Chapter 4) as well as addition of glucose as a technique to improve fiber formation was explored (Chapter 5). Engineering soft tissue to bone interfaces with appropriate mechanical, chemical, and cellular gradients is essential for the long term stability of an implant, however this presents unique tissue engineering design challenges (Chapter 2). A model system was developed to run high throughput experiments targeted at designing meniscal entheses for surgical fixation of tissue engineered constructs (Chapter 6)

    Fiber development and matrix production in tissue-engineered menisci using bovine mesenchymal stem cells and fibrochondrocytes

    No full text
    <p>Mesenchymal stem cells (MSCs) have been investigated with promising results for meniscus healing and tissue engineering. While MSCs are known to contribute to extracellular matrix (ECM) production, less is known about how MSCs produce and align large organized fibers for application to tissue engineering the meniscus. The goal of this study was to investigate the capability of MSCs to produce and organize ECM molecules compared to meniscal fibrochondrocytes (FCCs). Bovine FCCs and MSCs were encapsulated in an anatomically accurate collagen meniscus using monoculture and co-culture of each cell type. Each meniscus was mechanically anchored at the horns to mimic the physiological fixation by the meniscal entheses. Mechanical fixation generates a static mechanical boundary condition previously shown to induce formation of oriented fiber by FCCs. Samples were cultured for 4 weeks and then evaluated for biochemical composition and fiber development. MSCs increased the glycosaminoglycan (GAG) and collagen production in both co-culture and monoculture groups compared to FCC monoculture. Collagen organization was greatest in the FCC monoculture group. While MSCs had increased matrix production, they lacked the fiber organization capabilities of FCCs. This study suggests that GAG production and fiber formation are linked. Co-culture can be used as a means of balancing the synthetic properties of MSCs and the matrix remodeling capabilities of FCCs for tissue engineering applications.</p

    Characteristics of 698 patients with dissociative seizures: a UK multicenter study

    Get PDF
    Objective We aimed to characterize the demographics of adults with dissociative (nonepileptic) seizures, placing emphasis on distribution of age at onset, male:female ratio, levels of deprivation, and dissociative seizure semiology. Methods We collected demographic and clinical data from 698 adults with dissociative seizures recruited to the screening phase of the CODES (Cognitive Behavioural Therapy vs Standardised Medical Care for Adults With Dissociative Non‐Epileptic Seizures) trial from 27 neurology/specialist epilepsy clinics in the UK. We described the cohort in terms of age, age at onset of dissociative seizures, duration of seizure disorder, level of socioeconomic deprivation, and other social and clinical demographic characteristics and their associations. Results In what is, to date, the largest study of adults with dissociative seizures, the overall modal age at dissociative seizure onset was 19 years; median age at onset was 28 years. Although 74% of the sample was female, importantly the male:female ratio varied with age at onset, with 77% of female but only 59% of male participants developing dissociative seizures by the age of 40 years. The frequency of self‐reported previous epilepsy was 27%; nearly half of these epilepsy diagnoses were retrospectively considered erroneous by clinicians. Patients with predominantly hyperkinetic dissociative seizures had a shorter disorder duration prior to diagnosis in this study than patients with hypokinetic seizures (P < .001); dissociative seizure type was not associated with gender. Predominantly hyperkinetic seizures were most commonly seen in patients with symptom onset in their late teens. Thirty percent of the sample reported taking antiepileptic drugs; this was more common in men. More than 50% of the sample lived in areas characterized by the highest levels of deprivation, and more than two‐thirds were unemployed. Significance Females with dissociative seizures were more common at all ages, whereas the proportion of males increased with age at onset. This disorder was associated with socioeconomic deprivation. Those with hypokinetic dissociative seizures may be at risk for delayed diagnosis and treatment
    corecore